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7.1 Exact String Matching

Three important variants:
Both P (|P|=n) and T (|T|=m) are known: 

Suffix tree method achieves same worst-case bound 
O(n+m) as KMP or BM.

T is fixed and build suffix tree, then P is input:
k: number of occurrences of P
Using suffix tree: O(n+k)
In contrast ( preprocess P): O(n+m) for any single P

P is fixed, then T is input
Select KMP or BM rather than suffix tree.
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7.2 Exact Set Matching

Both Aho-Corasick and Suffix methods find 
all occurrences of P in T in O(n+m+k). But 
have preference by case.
Comparison:

AC: build keyword tree: size O(n), time O(n).
When set of patterns is larger than T, suffix tree 
approach uses less space, but more time to 
search.

E.g. molecular biology, where pattern library is large.

When total size of patterns is smaller than T, AC 
method use less space. But suffix tree uses less 
time.
Neither method is superior in time and space.

One case where suffix tree is better, see 
Application 8.

Time/space trade-off remains, but suffix tree can 
be used for chosen time/space combinations, 
whereas no choice for keyword tree.
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7.3 Substring Problem for a Database of 
Patterns

The most interesting version:
A set of string, or a database, is known and fixed. 
A sequence of strings will be presented. For each 
presented string S, find all the strings in the 
database containing S as a substring.

The total length of all the strings, m, in the 
database is assumed to be large.
In the context of genomic DNA data, the 
problem of finding substring cannot be solved 
by exact set matching.

Suffix tree solution:
A generalized suffix tree is built for database in 
O(m) time and O(m) space. 
Any single string S of length n can be found or 
declared not to be there in O(n) time.
If S matches a path in the tree.

A full string is in S iff matching path reaches a leaf when 
last symbol of S is examined.
Find all occurrences containing S as substring in O(n+k) 
time by traversing subtree below where S is found.
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7.4. Longest Common Substring for Two 
Strings

Different from Longest Common Subsequence
problem.
E.g. S1: superiorcalifornialivers S2: sealiver

Longest common substring: alive
Longest common substring of two strings can be 
found in linear time using a generalized suffix tree.

Find the node with the greatest depth that is marked both 1 
and 2.
Linear construction time
Node marking and calculation of string depth can be done 
by standard linear tree traversal methods.

1970: Don Knuth conjectured that a linear time 
algorithm would be impossible.

7.5 Recognizing DNA Contamination

Given a string S1( the newly isolated and 
sequenced string of DNA) and a known string 
S2 ( the combined sources of possible 
contamination), find all substrings of S2 that 
occur in S1 and are longer than some given 
length l. These substrings are candidates of 
unwanted pieces of S2 that have 
contaminated the desired DNA string.
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Finding common substrings

Can be solved in linear time by extending the 
longest common substring of two strings.
Build a generalized suffix tree for S1 and S2.
Mark each internal node that has in its 
subtree a leaf representing a suffix of S1 and 
also a leaf representing a suffix of S2.
Report all marked nodes that have string 
depth of l or greater.

7.6 Common Substrings of more than two 
sequences
Given a set of strings, find substrings that are common 

to a large number of those strings.
Formal statement:
Given: K strings whose lengths sum to n

For each k between 2 and K, we define l(k) to be the 
length of the longest substring common to at least k 
of the strings.

Example: 
Strings - {sandollar, sandlot, handler, grand, pantry}
l(2) – 4, l(3) – 3, l(4) – 3, l(5) – 2 
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7.6: Linear-time Solution

Build generalized suffix tree T for all the input 
strings.
For every internal node v of T, define c(v) to be the 
number of distinct string identifiers that appear at 
the leaves in the subtree of v.[ It is easy to compute 
the number of leaf nodes under v; but computing 
c(v) is complicated by the fact that more than two 
leaves may have same identifier.]
l(k) is the depth of the deepest node v such that c(v) 
≥ k

7.6: Complexity

Counting the number of leaves under an internal 
node v does not give c(v).
Therefore, each internal node v maintains a K-
length bit vector. Bit i in the vector is set to 1 if there 
is at least one leaf under v belonging to string i. 
The bit vector for an internal node v can be 
obtained ORing the bit-vectors of all the children of 
v.
Since there are O(n) edges in the tree, the time 
needed will be O(Kn)
There is a O(n) solution. See Chapter 9.
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7.10 All-pairs Suffix-Prefix Matching

Definition:
Given two strings Si and Sj, any suffix of Si that 

matches a prefix of Sj is called a suffix-prefix match 
of Si, Sj.

Given a collection of strings S = S1, S2,…Sk, the all-
pairs suffix-prefix problem is the problem of 
finding, for each ordered pair Si, Sj in S, the longest
suffix-prefix match of Si, Sj.

Motivation:
Approximate methods for the shortest superstring
problem.

7.10: linear time solution

We call an edge terminal edge if it is labeled 
with only a string termination symbol.
Solution:

Build  a generalized suffix tree T(S) for the k
strings in S.
Build list L(v) for each internal node v

L(v) contains index i if a terminal edge labeled i is 
incident on v

The deepest node v on the path to leaf j such that 
i ∈L(v) identifies that longest match between a 
suffix of Si and a prefix of Si.
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7.10 (continued…)

Traverse T(S) in a depth-first manner
Maintain k stacks, one for each string
When a node v is reached in forward direction, push 
v on to the ith stack, for each i ∈L(v).
When a leaf j corresponding to the entire string Sj is 
reached, scan the k stacks and record the current 
top of each stack.
When the depth-first traversal backs up past a node 
v, pop the top of any stack whose index is in L(v)
Complexity:O(m+k2)

Importance of Repetitive Structures in 
molecular strings

Over 50% of human genome consists of 
repeats.
Complimentary palindromes regulate 
transcription (by forming hair-pin loops)
Clustered genes that code for similar proteins
Pseudogenes
Restriction enzyme cutting sites
Tandem repeats and tandem arrays
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Uses of repetitive structures

Genetic mapping
Requires the identification of markers that are 
highly variable between individuals
Tandem arrays can be used as such markers

The number of repeats in a tandem array varies from 
individual to individual

Micro satellite markers – tandem repeats of very 
short strings

Finding all maximal repetitive structures

Defining repeats is crucial
A string consisting of n copies of the same character will 
have O(n4) pairs of repeats

Maximal repeated pair in a given string S:
“A pair of identical substrings α and β in S such that extending 
α and β in either direction would destroy the equality of the 
two strings”

i.e, occurrences xαy and vβw, x≠v and y ≠w, where x,y,v
and w are characters will give a maximal repeated pair α
and β .
Represented by a triple (p1, p2, n’), where p1 and  p2 give 
the staring positions and n’ gives the length.
R(S) – the set of all triples describing maximal pairs in S
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Maximal repeated pairs

Example:

raxrycbaqcbaziiiycbaxS

212019181716151413121110987654321

Maximal pairs:
(2,10,3) – xabcyiiizabcqabcyrxar
(2,14,4) – xabcyiiizabcqabcyrxar
(10,14,3) – xabcyiiizabcqabcyrxar
(6,7,2) – xabcyiiizabcqabcyrxar

- Allows overlaps!

More definitions

Maximal repeat : 
“A substring of S that occurs in a maximal pair in S”.
Example: abc in S = xabcyiiizabcqabcyrxar

Note: There can be numerous maximal repeated pairs, but there can 
be only a limited number of maximal repeats.

Supermaximal repeat
“A maximal repeat that never occurs as a substring 

of any other maximal repeat”
Example: abcy in S = xabcyiiizabcqabcyrxar
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Using suffix trees to find maximal repeats

Lemma 7.12.1:
“If a string α is a maximal 
repeat in S, then α will be 
the path-label of an internal 
node v in T(S)”
Proof: Gusfield, page 144

Theorem 7.12.1:
“There can be at most n
maximal repeats in any 
string of length n”
- Why?

α~β

root

v

Finding maximal repeats: Definitions

left character
For each position i in S, S(i-1) is called the left character i.
Left character of a leaf in T(S) is the left character of the 
suffix position represented by that leaf.

left diverse
An internal node v in T(S) is called left-diverse if at least 
two leaves in v’s subtree have different left characters.

Theorem:
“The string α labeling the path to a node v of T(S) 
is a maximal repeat if and only if v is left diverse”
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Finding left diverse nodes in linear time

For each internal node v, the algorithm either:
Records that v is left diverse, or:
Records the character left(v) that is the left character of 
every leaf in v’s subtree.

Starts by recording the left character of each leaf in 
T(S)
Processes the internal nodes in T(S) bottom-up

If any child of v is left diverse, then v is left diverse
If none of the children are left diverse, then it examines the 
recorded characters of all the children:

If all of the characters are x, then the left character of v is x
If all of them are not x, then v is left-diverse 

Finding all maximal repeats in linear time

Path labels to all internal nodes in T(S) that 
are left diverse
- Simply delete all internal nodes that are not left 

diverse!
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Finding Supermaximal repeats in 
linear time
Near-supermaximal repeat

A substring α is near-supermaximal repeat if α is a 
maximal repeat that occurs at least once in a 
location where it is not contained in another maximal 
repeat
Example:

in aαbxαyaαbxαb, α is neither supermaximal nor near-supermaximal
abc in xabcyiiizabcqabcyrxar is near-supermaximal

Note: 
The set of near-supermaximal repeats is not the 
same as the set of maximal repeats that are not 
super-maximal

Finding super-maximal repeats

Lemma 7.12.2: 
If v and w are internal nodes in T(S) 
such that w is a child of v, and if α is the 
path-label of v, then none of the 
occurrences of α specified the leaves in 
the subtree under w witness the near-
supermaximality of α. 

Lemma 7.12.3:
Let w be a leaf representing a suffix 
starting at position i, and let w be a child 
of v. Then, the occurrence of α at 
position i witnesses the near-
supermaximality of α if and only if x is 
the left character of no other leaf below 
v. 

root

α

γ
v

w

root

α

xγ
v

w
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Finding supermaximal repeats in linear 
time
Theorem 7.12.4

“A left diverse internal node v represents a near-supermaximal
repeat α if and only if one of v’s children is a leaf, and its left-
character is the left character of no other leaf below v.”

“A left diverse internal node v represents a supermaximal repeat 
α if and only if all of v’s children are leaves, and each has a 
distinct left character”

Degree of near-supermaximality: The fraction of occurrence of α that 
witness its near super-maximality

7.13: Circular string linearization

Problem
Cut a circular string S so that the resulting linear string is 
lexically smallest of all the n possible linear strings created 
by cutting S.

Solution
Cut S at an arbitrary position to give a linear string L.
Build the suffix tree T for the string LL$, where $ is lexically 
greater than any character in L.
Traverse tree T

At every node, take the lexically smallest edge
Traverse until the traversed has string-depth of n.
Any leaf l at that point can be used to cut the string


