Applications of Suffix Trees

Dr. Amar Mukherjee
CAP 5937 - ST: Bioinformatics
University of central Florida

7.1 Exact String Matching

- Three important variants:
- Both $P(|P|=n)$ and $T(|T|=m)$ are known:
- Suffix tree method achieves same worst-case bound $\mathrm{O}(\mathrm{n}+\mathrm{m})$ as KMP or BM.
$\square \mathrm{T}$ is fixed and build suffix tree, then P is input:
- k: number of occurrences of P
- Using suffix tree: $\mathrm{O}(\mathrm{n}+\mathrm{k})$
- In contrast (preprocess P): $O(n+m)$ for any single P
- P is fixed, then T is input
- Select KMP or BM rather than suffix tree.

7.2 Exact Set Matching

- Both Aho-Corasick and Suffix methods find all occurrences of P in T in $O(n+m+k)$. But have preference by case.
- Comparison:
- AC: build keyword tree: size $O(n)$, time $O(n)$.
- When set of patterns is larger than T, suffix tree approach uses less space, but more time to search.
- E.g. molecular biology, where pattern library is large.
- When total size of patterns is smaller than T, AC method use less space. But suffix tree uses less time.
- Neither method is superior in time and space.
- One case where suffix tree is better, see Application 8.
- Time/space trade-off remains, but suffix tree can be used for chosen time/space combinations, whereas no choice for keyword tree.

7.3 Substring Problem for a Database of

Patterns

- The most interesting version:
- A set of string, or a database, is known and fixed. A sequence of strings will be presented. For each presented string S , find all the strings in the database containing S as a substring.
- The total length of all the strings, m, in the database is assumed to be large.
- In the context of genomic DNA data, the problem of finding substring cannot be solved by exact set matching.
- Suffix tree solution:
- A generalized suffix tree is built for database in $O(\mathrm{~m})$ time and $\mathrm{O}(\mathrm{m})$ space.
- Any single string S of length n can be found or declared not to be there in $\mathrm{O}(\mathrm{n})$ time.
- If S matches a path in the tree.
- A full string is in S iff matching path reaches a leaf when last symbol of S is examined.
- Find all occurrences containing S as substring in $O(n+k)$ time by traversing subtree below where S is found.

7.4. Longest Common Substring for Two

Strings

- Different from Longest Common Subsequence problem.
- E.g. S1: superiorcalifornialivers S2: sealiver
- Longest common substring: alive
- Longest common substring of two strings can be found in linear time using a generalized suffix tree.
- Find the node with the greatest depth that is marked both 1 and 2.
- Linear construction time
- Node marking and calculation of string depth can be done by standard linear tree traversal methods.
- 1970: Don Knuth conjectured that a linear time algorithm would be impossible.

7.5 Recognizing DNA Contamination

- Given a string S1(the newly isolated and sequenced string of DNA) and a known string S2 (the combined sources of possible contamination), find all substrings of S2 that occur in S1 and are longer than some given length I. These substrings are candidates of unwanted pieces of S2 that have contaminated the desired DNA string.

Finding common substrings

- Can be solved in linear time by extending the longest common substring of two strings.
- Build a generalized suffix tree for S1 and S2.
- Mark each internal node that has in its subtree a leaf representing a suffix of S1 and also a leaf representing a suffix of S 2 .
- Report all marked nodes that have string depth of I or greater.

7.6 Common Substrings of more than two sequences

Given a set of strings, find substrings that are common to a large number of those strings.
Formal statement:
Given: K strings whose lengths sum to n

- For each k between 2 and K, we define $l(k)$ to be the length of the longest substring common to at least k of the strings.
Example:
Strings - \{sandollar, sandlot, handler, grand, pantry\}
$I(2)-4, I(3)-3, I(4)-3, I(5)-2$

7.6: Linear-time Solution

- Build generalized suffix tree T for all the input strings.
- For every internal node v of T, define $c(v)$ to be the number of distinct string identifiers that appear at the leaves in the subtree of v. [It is easy to compute the number of leaf nodes under v; but computing $c(v)$ is complicated by the fact that more than two leaves may have same identifier.]
- $I(k)$ is the depth of the deepest node v such that $c(v)$ $\geq k$

7.6: Complexity

- Counting the number of leaves under an internal node v does not give $c(v)$.
- Therefore, each internal node v maintains a K length bit vector. Bit i in the vector is set to 1 if there is at least one leaf under v belonging to string i.
- The bit vector for an internal node v can be obtained ORing the bit-vectors of all the children of v.
- Since there are $O(n)$ edges in the tree, the time needed will be $\mathrm{O}(\mathrm{Kn})$
- There is a $O(n)$ solution. See Chapter 9.

7.10 All-pairs Suffix-Prefix Matching

Definition:
Given two strings S_{i} and S_{j}, any suffix of S_{i} that matches a prefix of S_{j} is called a suffix-prefix match of S_{i}, S_{j}.
Given a collection of strings $S=S_{1}, S_{2}, \ldots S_{k}$, the allpairs suffix-prefix problem is the problem of finding, for each ordered pair S_{i}, S_{j} in S, the longest suffix-prefix match of S_{i}, S_{j}.
Motivation:

- Approximate methods for the shortest superstring problem.

7.10: linear time solution

- We call an edge terminal edge if it is labeled with only a string termination symbol.
- Solution:
- Build a generalized suffix tree $T(S)$ for the k strings in S .
- Build list $L(v)$ for each internal node v
- $L(v)$ contains index i if a terminal edge labeled i is incident on v
- The deepest node v on the path to leaf j such that $i \in L(v)$ identifies that longest match between a suffix of S_{i} and a prefix of S_{i}.

7.10 (continued...)

- Traverse $T(\mathrm{~S})$ in a depth-first manner
- Maintain k stacks, one for each string
- When a node v is reached in forward direction, push v on to the ith stack, for each $i \in L(v)$.
- When a leaf j corresponding to the entire string S_{j} is reached, scan the k stacks and record the current top of each stack.
- When the depth-first traversal backs up past a node v, pop the top of any stack whose index is in $L(v)$
- Complexity: $O\left(m+k^{2}\right)$

Importance of Repetitive Structures in molecular strings

- Over 50\% of human genome consists of repeats.
- Complimentary palindromes regulate transcription (by forming hair-pin loops)
- Clustered genes that code for similar proteins
- Pseudogenes
- Restriction enzyme cutting sites
- Tandem repeats and tandem arrays

Uses of repetitive structures

- Genetic mapping

- Requires the identification of markers that are highly variable between individuals
- Tandem arrays can be used as such markers
- The number of repeats in a tandem array varies from individual to individual
- Micro satellite markers - tandem repeats of very short strings

Finding all maximal repetitive structures

- Defining repeats is crucial
- A string consisting of n copies of the same character will have $O\left(n^{4}\right)$ pairs of repeats
- Maximal repeated pair in a given string S :
"A pair of identical substrings α and β in S such that extending α and β in either direction would destroy the equality of the two strings"
- i.e, occurrences $x \alpha y$ and $v \beta \omega, x \neq v$ and $y \neq w$, where x, y, v and w are characters will give a maximal repeated pair α and β.
- Represented by a triple (p_{1}, p_{2}, n^{\prime}), where p_{1} and p_{2} give the staring positions and n ' gives the length.
- $R(S)$ - the set of all triples describing maximal pairs in S

Maximal repeated pairs

Example:
$\left.\begin{array}{lllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ S & x & a & b & c & y & i & i & i & z & a & b & c & q & a & b & c & y & r & x & a\end{array}\right)$ Maximal pairs:
(2,10,3) - xabcyiiizabcqabcyrxar
(2,14,4) - xabcyiiizabcqabcyrxar
$(10,14,3)$ - xabcyiiizabcqabcyrxar
($6,7,2$) - xabcyiiizabcqabcyrxar

- Allows overlaps!

More definitions

- Maximal repeat :
"A substring of S that occurs in a maximal pair in S ".
Example: abc in S = xabcyiiizabcqabcyrxar
Note: There can be numerous maximal repeated pairs, but there can be only a limited number of maximal repeats.
- Supermaximal repeat
"A maximal repeat that never occurs as a substring of any other maximal repeat"
Example: abcy in $S=$ xabcyiiizabcqabcyrxar

Using suffix trees to find maximal repeats

Lemma 7.12.1:
"If a string α is a maximal repeat in S, then α will be the path-label of an internal node v in $T(S)$ "
Proof: Gusfield, page 144
Theorem 7.12.1:

"There can be at most n maximal repeats in any
string of length $n "$

- Why?

Finding maximal repeats: Definitions

left character

- For each position i in $S, S(i-1)$ is called the left character i.
- Left character of a leaf in $T(S)$ is the left character of the suffix position represented by that leaf.
left diverse
- An internal node v in $T(S)$ is called left-diverse if at least two leaves in v 's subtree have different left characters.

Theorem:

"The string α labeling the path to a node v of $T(\mathrm{~S})$ is a maximal repeat if and only if v is left diverse"

Finding left diverse nodes in linear time

- For each internal node v, the algorithm either:
- Records that v is left diverse, or:
- Records the character left(v) that is the left character of every leaf in v 's subtree.
- Starts by recording the left character of each leaf in $T(S)$
- Processes the internal nodes in $T(S)$ bottom-up
- If any child of v is left diverse, then v is left diverse
- If none of the children are left diverse, then it examines the recorded characters of all the children:
- If all of the characters are x, then the left character of v is x
- If all of them are not x, then v is left-diverse

Finding all maximal repeats in linear time

- Path labels to all internal nodes in $T(S)$ that are left diverse
- Simply delete all internal nodes that are not left diverse!

Finding Supermaximal repeats in

linear time

Near-supermaximal repeat

A substring α is near-supermaximal repeat if α is a maximal repeat that occurs at least once in a location where it is not contained in another maximal repeat Example:

- in a $\alpha b x \alpha y a \alpha b x \alpha b, \alpha$ is neither supermaximal nor near-supermaximal
- abc in xabcyiiizabcqabcyrxar is near-supermaximal

Note:
The set of near-supermaximal repeats is not the same as the set of maximal repeats that are not super-maximal

Finding super-maximal repeats

Lemma 7.12.2:
If v and w are internal nodes in $T(S)$ such that w is a child of v, and if α is the path-label of v, then none of the occurrences of α specified the leaves in the subtree under w witness the nearsupermaximality of α.

Lemma 7.12.3:
Let w be a leaf representing a suffix starting at position i, and let w be a child of v. Then, the occurrence of α at position i witnesses the near-
supermaximality of α if and only if x is the left character of no other leaf below v.

Finding supermaximal repeats in linear time

Theorem 7.12.4
"A left diverse internal node v represents a near-supermaximal repeat α if and only if one of v 's children is a leaf, and its leftcharacter is the left character of no other leaf below v."
"A left diverse internal node v represents a supermaximal repeat α if and only if all of v's children are leaves, and each has a distinct left character"

Degree of near-supermaximality: The fraction of occurrence of α that witness its near super-maximality

7.13: Circular string linearization

- Problem
- Cut a circular string S so that the resulting linear string is lexically smallest of all the n possible linear strings created by cutting S.
- Solution
- Cut S at an arbitrary position to give a linear string L.
- Build the suffix tree T for the string LL\$, where $\$$ is lexically greater than any character in L.
- Traverse tree T
- At every node, take the lexically smallest edge
- Traverse until the traversed has string-depth of n.
- Any leaf $/$ at that point can be used to cut the string

